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Abstract

Contrastive adversarial training has successfully improved the robustness of contrastive
learning (CL). However, the robustness metric in these methods depends on attack algo-
rithms, image labels, and downstream tasks, introducing reliability concerns. To address
these issues, this paper proposes a novel Robustness Verification framework for Contrastive
Learning (RVCL). Specifically, we define the verification problem of CL from deterministic
and probabilistic perspectives, then provide several effective metrics to evaluate the robust-
ness of CL encoder. Furthermore, we use extreme value theory to reveal the relationship
between the robust radius of the CL encoder and that of the supervised downstream task.
Extensive experiments on various benchmark models and datasets validate theoretical
findings, and further demonstrate RVCL’s capability to evaluate the robustness of both CL
encoders and images.
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1 Introduction

While neural networks (NNs) have exhibited impressive performance across various applica-
tions, numerous studies (Goodfellow et al., 2015; Madry et al., 2018) have underscored the
vulnerability of NNs to imperceptibly perturbed images. Consequently, a rapidly growing
body of work aims to enhance the robustness of NNs.

One notably effective approach in this field is adversarial training (AT) (Moosavi-Dezfooli
et al., 2016; Carlini and Wagner, 2017), which improves the robustness of NN by augmenting
the training set with adversarial samples (Szegedy et al., 2014). Schmidt et al. (2018)
highlight that AT requires a large amount of data, while labels of data are expensive to
obtain. Consequently, efforts have been made to enhance the robustness of adversarially
trained models by incorporating additional unlabeled data (Alayrac et al., 2019; Carmon
et al., 2019; Zhai et al., 2019).

∗. Corresponding Author.

©2023 Zekai Wang and Weiwei Liu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/23-0668.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0668.html


Wang and Liu

Recently, attempts have been made to combine AT with contrastive learning (CL) (Kim
et al., 2020; Fan et al., 2021). CL (Chen et al., 2020; He et al., 2020) has showcased
exceptional capabilities in unsupervised learning. On downstream image classification tasks,
CL can surpass the standard accuracy of supervised learning through the utilization of large-
scale unlabeled dataset. It is therefore of primary interest to study the robust performance
achieved by contrastive AT (Gowal et al., 2021).

However, existing contrastive AT methods employ the empirical robustness metric,
specifically robust accuracy, to assess encoder robustness. These methods entail training
a linear classifier on the labeled training dataset, utilizing features extracted by the CL
encoder. Subsequently, they employ adversarial test images to assess encoder robustness.
Robust accuracy is contingent upon attack algorithms, image labels, and downstream tasks,
giving rise to three inherent issues:

1. Attack algorithm: Robust accuracy is given by specific attack algorithm, such as
PGD attack (Madry et al., 2018). Consequently, the obtained results may not align
consistently with potent adversaries like AutoAttack (Croce and Hein, 2020b)

2. Image label: The practice of training with unlabeled images while evaluating with
labeled images introduces a substantial disconnect in the evaluation process.

3. Downstream task: Determining the factors influencing robust accuracy poses a chal-
lenge, as it could stem from either the training process of downstream task or the
encoder’s robustness.

In fact, the first issue has been explored in supervised learning. Prior research has
revealed that the majority of defense heuristics prove ineffective against sufficiently potent
attack algorithms (Carlini and Wagner, 2017; Uesato et al., 2018). Furthermore, even if
the model successfully defends against the attack algorithm used in the evaluation, there is
no assurance that it ill retain such robustness when confronted with novel and unforeseen
attackers. This has encouraged researchers to develop robustness verification (Katz et al.,
2017; Wong et al., 2018): the classifier is verified to remain consistent predictions within the
neighborhood of a given point x, regardless of what attack algorithm is applied. Robustness
verification finds the largest radius of this neighborhood, referred to as the robust radius,
which serves as an important metric for assessing neural network robustness.

Regrettably, prior studies of robustness verification have exclusively relied on supervised
learning, mandating true data labels for both the supervised classifier and verifier. A
simplistic solution is to apply the existing verification framework to supervised downstream
tasks. However, this approach would inherit the challenges outlined in Issues 2 & 3, which
prompts us to pose the following questions:

• Can we formulate a robustness verification framework for contrastive learning, elimi-
nating the need for class labels and downstream tasks?

• Is there any correlation between the robust radius of the CL encoder and that of the
downstream task?

Our research endeavors to conduct a rigorous and comprehensive investigation to address
these questions. Our principal contributions are outlined as follows:
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1. We propose RVCL, a novel Robustness Verification framework for Contrastive Learning.
We define the robust radius for CL, where points falling within this radius are iden-
tified as negative samples with zero probability (deterministic verification) or small
probability (probabilistic verification). This novel metric assesses the robustness of
encoders, obviating the need for attack algorithms, image labels, or downstream tasks.

2. We employ extreme value theory to establish that, in both binary and multi-class
scenarios, the robust radius of the CL encoder serves as an upper bound for the
downstream task’s robust radius. This finding aligns with our experimental results.

3. To validate the efficacy of RVCL, we conduct extensive experiments on benchmark
datasets (Mnist, CIFAR-10, CIFAR-100) and diverse models (CNN, ResNet). Our
experimental results demonstrate that RVCL provides a suitable robustness metric for
different models without requiring labels, thus corroborating our theoretical analysis.
Furthermore, RVCL effectively evaluates the anti-disturbance ability of various images.

2 Related work

2.1 Self-supervised Contrastive Learning

Self-supervised learning (Jing and Tian, 2021), which involves training models using unlabeled
data and various pretext tasks, has become popular as a means of extracting feature
representation for deep NNs. Early advances have been used to solve image jigsaw puzzles
(Noroozi and Favaro, 2016), predict rotation angles (Gidaris et al., 2018), fill image patches
(Doersch et al., 2015), etc. Recently, contrastive learning (CL) (Chen et al., 2020; He et al.,
2020; Tian et al., 2020; Wu et al., 2018) has been proposed by maximizing the agreement
between positive samples (e.g., data augmentation) while contrasting with negative samples,
and has further been shown to work well in learning effective representations. Some
theoretical works have also been proposed; for example, Saunshi et al. (2019) provide the
first generalization bound for CL, while Nozawa et al. (2020) extend it by means of a
PAC-Bayesian approach.

2.2 Contrastive Adversarial Training

Due to the brittleness of NNs when faced with tiny input perturbations, AT (Madry et al.,
2018) is one of the most powerful robust training methods used to enhance model robustness.
Several recent works (Kim et al., 2020; Ho and Vasconcelos, 2020; Jiang et al., 2020; Fan
et al., 2021) have explored how to improve robustness using contrastive AT. To obtain
more robust data representations, AT is used on contrastive pretraining tasks following the
“contrastive adversarial pretraining + supervised finetuning” paradigm. However, existing
methods use an empirical robustness metric; the systematic study of the verified robustness
of CL have been less explored.

2.3 Robustness Verification

In this paper, we consider two branches of verification approaches: deterministic verification
and probabilistic verification, following the taxonomy of Li et al. (2020). However, previous
works focus on supervised settings; verification with CL settings remain unknown.
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Deterministic verification When the given input is non-robust against the attack,
deterministic verification is guaranteed to identify this nonrobustness and outputs “not
verified”. The literature for this setting can be broadly divided into several categories:
complete verifiers using satisfiability modulo theory (SMT) (Katz et al., 2017; Ehlers,
2017), mixed integer programming (MIP) (Tjeng et al., 2019; Anderson et al., 2020) and
branch and bound (BaB) (Bunel et al., 2018; Wang et al., 2021); incomplete verifiers using
bound propagation (Zhang et al., 2018; Xu et al., 2020), and convex relaxation by linear
programming (Wong et al., 2018; Wong and Kolter, 2018).

Probabilistic verification Probabilistic verification is a promising method that can
provide verified robustness for large NNs. Comparing with deterministic verification, proba-
bilistic verification is guaranteed to output “not verified” with a high probability when the
given input can be attacked successfully.

Probabilistic verification is based on randomized smoothing (RS), while RS originated
from differential privacy (Lécuyer et al., 2019). Cohen et al. (2019) propose to add Gaussian
noise to smooth the models, and thus derive the verified robustness for these smoothed
classifiers. At present, RS is considered the state-of-the-art approach to offering a provable
guarantee of robustness against ℓ2-perturbations (Li et al., 2020), being the only type that
can provide verification on large-scalse models and datasets. In light of this, many existing
works focus on improving the robustness guarantee given by RS. such as by using different
smoothing measures (Lee et al., 2019; Yang et al., 2020), different divergences (Dvijotham
et al., 2020), etc.

2.4 Extreme Value Theory

Extreme value theory (EVT) has been recognized as a powerful tool, since it enables the
limit distribution of properly normalized maxima to be effectively modeled (Scheirer et al.,
2011). This success has produced strong empirical results for describable visual attributes
(Scheirer et al., 2012), visual inspection tasks (Gibert et al., 2015) and open set recognition
problems (Rudd et al., 2018), etc. Recently, CLEVER (Weng et al., 2018b) estimates the
robust radius of supervised verification using EVT. The difference is discussed in more detail
in Appendix D. In this paper, we creatively use EVT to theoretically analyze the relationship
between the robust radius of the CL encoder and that of the downstream task.

3 Preliminaries

We first present notations and describe the frameworks for contrastive learning and supervised
verification problem that will be essential for our analysis.

Notions: Let ∥ · ∥p denote ℓp norm (p ∈ N+ ∪ {+∞}). E.g., ∥ · ∥2 and ∥ · ∥∞ denote
the Euclidean norm ℓ2 and infinity norm ℓ∞, respectively. Bp(x0, ϵ) := {x | ∥x− x0∥p ≤ ϵ}
denotes that the input x is constrained into the ℓp ball. 1[Boolean expression] is the indicator
function (equal to 1 if the expression is True and 0 otherwise). We let sign(x) = 1 for x ≥ 0
and sign(x) = −1 for x < 0. If S is a set, |S| denotes its cardinality. The transpose of the
vector/matrix is represented by the superscript ⊤. u and v are column vectors with the
same dimension. The ℓ2 normalization is defined as ρ̃(u) = u/∥u∥2. The instance similarity
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is defined as ρ(u, v) = u⊤v/∥u∥2∥v∥2, which is the dot product between the ℓ2 normalized u
and v (i.e. cosine similarity). We use [n] to represent the set {1, 2, . . . , n}.

3.1 Contrastive Learning

Let X denote the set of all possible data points. Let Y denote the label set of the downstream
task, which is a discrete and finite set. f : X → Rd denotes the feature encoder. To highlight
the key ideas, we present the CL framework proposed by Saunshi et al. (2019) in a simplified
binary scenario, i.e., Y = {−1, 1}. The multi-class setting (|Y| > 2) is discussed in
Appendix B.1. CL assumes that we obtain the similar data in the form of pairs (x, x+) and
K independent and identically distributed (i.i.d.) negative samples x−1 , x

−
2 , . . . , x

−
K . Given

an unlabeled dataset U = {zi}mi=1, where zi = (xi, x
+
i , x

−
i1, . . . , x

−
iK), we aim to learn an

encoder f that makes f(x) similar to f(x+), while keeping away from f(x−1 ), . . . , f(x
−
K) at

the same time.

Linear evaluation One standard method for evaluating the performance of the CL model
is linear evaluation (Chen et al., 2020; Kim et al., 2020), which learns a downstream linear
layer after the base encoder, then uses a modified model for class-level classification. The
test accuracy on the downstream task is used as a proxy for representation quality. The
model with downstream layer is fine-tuned from a labeled dataset S = {(xi, yi)}ni=1. Both U
and S are assumed to be i.i.d. collections.

Data distributions Let C denote the set of latent classes (Saunshi et al., 2019) that are
all possible classes for points in X . For each class c ∈ C, there is a probability Dc over X that
captures the probability that a point belongs to class c. The distribution on C is denoted
by ϱ. Let c+, c− denote the positive and negative latent class drawn from ϱ; thus, Dc+ and
Dc− are the distributions to sample positive and negative samples, respectively. The process
for generating an unlabeled sample z = (x, x+, {x−i }Ki=1) ∈ U as follows: 1. Draw two latent
classes (c+, c−) ∼ ϱ2 ; 2. Draw two positive samples (x, x+) ∼ D2

c+ and K negative samples
{x−i ∼ Dc− | i ∈ [K]} .

To set up the labeled dataset S for binary scenario, we build the binomial distribution

ϱsup by fixing two classes c+, c−: ϱsup(c
+) = ϱ(c+)

ϱ(c−)+ϱ(c+)
, ϱsup(c

−) = ϱ(c−)
ϱ(c−)+ϱ(c+)

. We fix

yc+ =+1 and yc− =−1, then generate a labeled sample (x, y) ∈ S as follows: 1. Draw a class
c ∼ ϱsup and set the label y = yc ; 2. Draw a sample x ∼ Dc .

Loss function The learning process is divided into two steps: minimizing the contrastive
loss on the encoder and fine-tuning on the downstream layer using supervised loss. We focus
on logistic loss : ℓ(v) = log2(1 +

∑
j exp(−vj)) for v ∈ RK . Thus, the contrastive loss (Chen

et al., 2020; He et al., 2020) associated with the encoder f in this framework is defined as
follows:

Lun(f) = E
c+,c−

∼ϱ2

E
x,x+∼D2

c+

x−
i ∼Dc−

ℓ
({

f(x)T
(
f(x+)− f(x−j )

)})
. (1)

For linear evaluation, the supervised learning algorithm is given the mapped dataset Ŝ :=
{(f(xi), yi)}ni=1 and returns a predictor g : Rd → R. The label of x̂ ∈ Ŝ is obtained from
ŷ = sign(g(x̂)), ŷ ∈ {−1, 1}. The logistic loss in (2) is ℓ(v) = log2(1 + exp(−v)) for v ∈ R.
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We aim to minimize the supervised loss as follows:

Lsup(g ◦ f) = E
c∼ϱsup

E
x∼Dc

ℓ (yc · g(f(x))) . (2)

3.2 Supervised Verification

In this section, we set up the verification problem for supervised learning. Existing studies
of robustness verification (Wong et al., 2018; Cohen et al., 2019) mainly focus on defending
white-box attacks, which is the strongest adversaries who have full knowledge of the victim
model, including structures and parameters.

The supervised algorithm is given the labeled dataset S = {(xi, yi)}ni=1, (xi, yi) ∈ X × Y .
We consider the classification task with |Y| classes. Let h : X → Y be the classifier, which is
modeled by h(x) := argmaxi∈Y H i(x) with a differentiable mapping H : X → ∆|Y|−1, where
∆|Y|−1 denotes the probability simplex in R|Y|. In this paper, H is an NN followed by a
softmax layer. The final output after softmax function H i(x) measures how likely input x
belongs to i-th class.

Local adversarial robustness We refer to x′ = x+ δ as an adversarial sample of x for
classifier h if h correctly classifies x but assigns a different label to x′. In the context of local
adversarial robustness for NNs, we require h not only to correctly classify (x, y), but also to
be locally constant around x; i.e., h is certified not to contain any adversarial samples in the
ℓp ball centered at x. Formally, we define this property as lϵp-verified.

Definition 1 (lϵp-verified). For the given input (x, y), the model h is lϵp-verified at (x, y) if
it correctly classifies both x and x′ as y for any x′ ∈ Bp(x, ϵ), i.e., h(x

′) = y. It means there
are no adversarial samples around x.

The lϵp-verified of h at (x, y) depends on the radius of the largest ℓp ball centered at x
in which h does not change its prediction. This radius is called the robust radius, which is
formally defined as follows:

R(h;x, y) := inf
h(x′) ̸=y

∥∥x′ − x
∥∥
p
. (3)

If h(x) ̸= y, then R(h;x, y) := 0. It is natural to regard the robust radius as a robustness
metric. Unfortunately, computing the robust radius (3) is proven to be an NP-complete
problem due to the need for complete verification (Katz et al., 2017; Sinha et al., 2018). In
cases when h is too complex to control its predictions in practice (e.g. if h is a large NN on
high-dimensional data), solving (3) directly will be time-consuming. We can thus derive a
tight lower bound R of R given by incomplete verifiers, referred to as the certified radius,
which satisfies 0 ≤ R(h;x, y) ≤ R(h;x, y).

Formally, we define robustness verification (Li et al., 2020).

Definition 2 (Robustness verification). A is an algorithm of robustness verification. For
any (x, y), as long as there exists x′ ∈ Bp(x, ϵ) making h(x′) ̸= y (adversarial sample),
A(h, x, y, ϵ) = False (deterministic verification) or P(A(h, x, y, ϵ) = False) ≥ 1− α (proba-
bilistic verification), α is a small threshold. If A(h, x, y, ϵ) = True, h is lϵp-verified at (x, y)
providing by A.
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Deterministic verification We provide notions for ReLU NN. Consider an input vector
x ∈ Rd0 for a neural network with L layers. Let the number of neurons in the k-th layer be
dk, while Wk ∈ Rdk×dk−1 and bk ∈ Rdk (k ∈ [L]) represent the weights and biases of NN.
Let ϕk : Rd0 → Rdk be the operator mapping the input layer to layer k. σ(·) is the activation
function, while the ReLU activation is σ(·) = max(·, 0). σSM(·) denotes the softmax function.
For each k ∈ [L], ϕk(x) = Wkϕ̂k−1(x) + bk, ϕ̂k(x) = σ(ϕk(x)), ϕ̂0(x) = x. The output of
the neural network is ϕL(x) ∈ RdL . dL further denotes the number of input classes |Y|.

Following the common multi-class setting of deterministic verification problem (Zhang
et al., 2018; Xu et al., 2020), we consider feed-forward ReLU NN and ℓ∞-bounded attack.
We can view deterministic verification from optimization perspective.

Definition 3 (Multi-class deterministic verification problem). Given a point x ∈ Rd0,
the true label y, attack target label y′, class number dL = |Y|. We denote the NN output
H : Rd0 → RdL with H := σSM(ϕL(x)), where d0 and dL are the dimensions of the input
and output, respectively. Let h(x) := argmaxi∈Y H i(x) be the final predictor. For any fixed
ϵ, multi-class deterministic robustness verification problem is defined as follows:

h̃(x, y, y′, ϵ) := min
x′

Hy(x′)−Hy′(x′)

s.t. ϕk(x
′) = Wkϕ̂k−1(x

′) + bk, k ∈ [L],

ϕ̂k(x
′) = σ(ϕk(x

′)), k ∈ [L− 1],

H(x′) = σSM(ϕL(x
′)),

x′ ∈ B∞(x, ϵ).

(4)

If h̃ ≤ 0, ∃x′ ∈ B∞(x, ϵ) fools the model into producing an incorrect label. h is lϵ∞-verified
if h̃(x, y, ϵ) > 0. The complete verifier aims to solve (4) and calculates h̃ exactly. Recall that
complete verification is proven to be an NP-complete problem (Katz et al., 2017). Therefore,
many previous works of deterministic verification (Wong and Kolter, 2018; Zhang et al.,
2018; Xu et al., 2020) propose incomplete verifiers that relax the non-convexity part of NN
to derive a lower bound h̃ ≥ h. If h(x, y, y′, ϵ) > 0 is given by the incomplete verifier, model
h is also lϵ∞-verified at (x, y).

Note that Theorem 3 is defined in terms of target attack. This enables us to provide
the definition of robust radius under target attack, which means that H cannot be attack to
the target label y′ within this radius.

Ry′(h;x, y, y′) := inf
h(x′)=y′

∥∥x′ − x
∥∥
∞

= sup
ϵ

ϵ s.t. h̃(x, y, y′, ϵ) > 0.
(5)

The certified radius Ry′ is provided by incomplete verifier, which is the lower bound of the
robust radius R given by h.

Ry′(h;x, y, y′) := sup
ϵ

ϵ s.t. h(x, y, y′, ϵ) > 0. (6)

For the multi-class scenario, the lϵ∞-verified of h at (x, y) depends on the robust radius
in which h does not change its predicted label under untarget attack. Thus, the robust
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radius for multi-class verification depends on the smallest robust radius Ry′ . The certified
radius R for untarget attack is defined similarly.

R(h;x, y) := min
y′ ̸=y

Ry′ , R(h;x, y) := min
y′ ̸=y

Ry′ . (7)

Probabilistic verification Besides deterministic verification, one recently emerging
branch of studies proposes probabilistic verification based on Randomized smoothing (RS)
(Cohen et al., 2019). Currently, only these approaches are scalable enough to verify large-scale
NNs (e.g., ResNet) and datasets. RS constructs a new classifier ĥ from h that can more
easily obtain robustness by “smoothly” transforming the base classifier h with the Gaussian
distributions N (0, σ2I):

ĥ(x) := argmax
c∈Y

Pη∼N (0,σ2I) (h(x+ η) = c) , (8)

where σ2 is a hyperparameter that controls the level of smoothing. For a given (x, y), (Cohen
et al., 2019) show that robust radius R(ĥ;x, y) can be lower-bounded by certified radius
R(ĥ;x, y) derived from the confidence of ĥ at x, which we denote by ph(x), as follows:

R(ĥ;x, y) := σ · Φ−1(ph(x)) ≤ R(ĥ;x, y),

where ph(x) := Pη∼N (0,σ2I)(h(x+ η) = y),
(9)

provided that ĥ(x) = y; otherwise, R(ĥ;x, y) := 0. Φ−1 denotes the inverse cumulative
distribution function of the standard Gaussian distribution. This lower bound is known to
be tight for the ℓ2-minimum distance. The bound R is optimal for linear classifiers (Cohen
et al., 2019).

4 RVCL: Robustness Verification Framework for Contrastive Learning

In this section, we first introduce the deterministic verification problem on supervised
downstream tasks by simply modifying supervised verification (Theorem 3), and further
present several weaknesses of adopting (4) in CL. It motivates us to propose a novel RVCL
framework to solve these issues.

4.1 Verification Problem for Linear Evaluation

By defining the supervised deterministic verification problem on linear evaluation, we can
regard the robust radius R as a proxy robustness metric for CL.

We denote the encoder f : Rd0 → RdL with f := ϕL(x), where d0 and dL are the
dimensions of the encoder’s input and output. g denotes the downstream linear predictor,
which is modeled by g(x) := argmaxi∈Y Gi(x), G(x) is the downstream output after softmax
function. WLE ∈ R1×dL and bLE ∈ R are the weight and bias of g(x), respectively. The
optimization problem for linear evaluation is defined by simply modifying the constraints of
(4), as follows:
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g̃(x, y, y′, ϵ) := min
x′

Gy(x′)−Gy′(x′)

s.t. ϕk(x
′) = Wkϕ̂k−1(x

′) + bk, k ∈ [L],

ϕ̂k(x
′) = σ(ϕk(x

′)), k ∈ [L− 1],

G(x′) = σSM
(
WLEϕL(x

′) + bLE
)
,

x′ ∈ B∞(x, ϵ).

(10)

The difference between (4) and (10) is that there is no active function σ(·) between the
encoder and downstream layer. There is no barrier to applying incomplete verifiers on (10).
Thus, the definition of robust radius RLE(g;x, y) and certified radius RLE(g;x, y) on the
downstream task are similar to (7).

We can therefore regard RLE as a proxy robust radius at data point x. However, this
approach has serious problems:

1. RLE cannot be computed directly without a label.

2. Even if we have the label to compute RLE, and use RLE to evaluate the model
robustness, we do not know whether the robustness benefits from the encoder or
downstream layer.

Probabilistic verification for linear evaluation also suffers from these problems. It motivates
us to propose RVCL, a novel framework for verifying the robustness of encoders without the
need for labels and downstream tasks.

4.2 RVCL Framework

Many existing works have studied the supervised verification problem stated in Section 3.2.
However, the performing of robustness verification for CL has received less research attention.
In this section, we present the formal definition of the robustness verification problem from
deterministic and probabilistic perspectives on the encoder f , after which we provide two
robustness metrics to study the performance of the CL encoder and incomplete verifier.

Deterministic verification for CL Following Section 3.2, we consider ℓ∞ norm in this
subsection. The core intuition of supervised verification is that the points in the small
B∞(x, ϵ) ball should have the same label as x. Inspired by this idea, we define the conditions
under which the disturbance successfully attacks the encoder.

Given a positive sample x+, let the negative sample x− be the attack target of x+. We
hope that the points x′ ∈ B∞(x+, ϵ) will be more similar to x+ than any other negative
samples x−, while the instance-wise attack algorithm generates an adversarial sample
x′ ∈ B∞(x+, ϵ) with the attack strength ϵ, in order to fool the model by judging x′ as similar
to x−.

If the instance similarity ρ(f(x+), f(x′)) > ρ(f(x−), f(x′)) , then x′ is similar to x+ (i.e.
θ1 < θ2 in Figure 1), which means that the encoder f is not successfully attacked by x′. We
say that the encoder f is lϵ∞-verified at (x+, x−) if x′ is more similar to x+ than to x− for
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𝑥𝑥−

𝑥𝑥′

𝑥𝑥+𝜃𝜃1

𝜃𝜃2

Figure 1: θ is the angle between features given by f . If θ1 < θ2, f is not attacked successfully
by the adversarial sample x′.

any x′ ∈ B∞(x+, ϵ), i.e., there are no adversarial samples similar to x− around x+. Note
that the comparison of instance similarity has an equivalent form:

ρ(f(x+), f(x′)) > ρ(f(x−), f(x′)) ⇐⇒ (11)(
ρ̃(f(x+))− ρ̃(f(x−))

)⊤
f(x′) > 0 (12)

Judging whether or not (12) is True can be regarded as a part of forward propagation; thus,
we can define the optimization problem for CL by adding a linear layer after f with weight
WCL = (ρ̃(f(x+))− ρ̃(f(x−)))

⊤
.

Definition 4 (Deterministic verification for CL). Given two positive and negative samples
x+, x− ∈ Rd0, the feature encoder f : Rd0 → RdL with f := ϕL(x), ℓ2 normalization
ρ̃(u) = u/∥u∥2, for any fixed ϵ, the robustness verification problem for CL is defined as
follows:

f̃(x+, x−, ϵ) := min
x′

WCLf(x
′)

s.t. ϕk(x
′) = Wkϕ̂k−1(x

′) + bk, k ∈ [L],

ϕ̂k(x
′) = σ(ϕk(x

′)), k ∈ [L− 1],

WCL =
(
ρ̃(f(x+))− ρ̃(f(x−))

)⊤ ∈ R1×dL ,

f(x′) = ϕL(x
′), x′ ∈ B∞(x+, ϵ).

(13)

Moreover, the robust radius RCL and certified radius RCL for CL are defined as follows:

RCL(f ;x
+, x−) := inf

ρ(f(x′),f(x+))
<ρ(f(x′),f(x−))

∥∥x′ − x+
∥∥
∞

= sup
ϵ

ϵ s.t. f̃(x+, x−, ϵ) > 0,

RCL(f ;x
+, x−) := sup

ϵ
ϵ s.t. f(x+, x−, ϵ) > 0,

(14)

where f is the verified lower bound of f̃ given by the verifier; thus, 0 ≤ RCL(f ;x
+, x−) ≤

RCL(f ;x
+, x−).

10
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Algorithm 1 Deterministic verification for CL

1: # judge f is lϵ∞-verified at (x+, x−) or not
2: Input: encoder f , positive sample x+, negative sample x−, perturbation bound ϵ
3: Output: True: f is lϵ∞-verified at (x+, x−); False: f is not lϵ∞-verified at (x+, x−)
4: Function Predict(f , x+, x−, ϵ)
5: f = IncompleteVerifier(f, x+, x−, ϵ)
6: if f > 0 then return True

7: else return False

8:

9: # compute the certified radius of (x+, x−) on encoder f
10: Input: encoder f , positive sample x+, negative sample x−, tolerance t,

lower bound Rl, upper bound Ru

11: Output: certified radius RCL

12: Initialization: t = 10−6, Rl = 0, Ru = 1
13: Function Certify(f , x+, x−, t, Rl, Ru)
14: while |Ru − Rl| > t do
15: ϵ = (Rl+Ru)/2
16: # f is lϵ∞-verified at (x+, x−), the answer should be larger than current ϵ
17: if Predict(f , x+, x−, ϵ) then Rl = ϵ
18: else Ru = ϵ
19: end while
20: return ϵ

For verified prediction, f(x+, x−, ϵ) > 0 for a given strength ϵ implies that f is lϵ∞-verified
at (x+, x−). The procedure of verified prediction is presented in pseudocode as Predict.
We utilize Predict to obtain the certified instance accuracy (Aϵ

CL in Theorem 11) for the
test dataset Utest, since Aϵ

CL is the fraction of the test dataset for which f is lϵ∞-verified at
(x+, x−), i.e., Predict(f, x+, x−, ϵ) = True.

Besides prediction, we are also interested in the certified radius RCL for a given (x+, x−).
Apparently, f(x+, x−, ϵ) is non-increasing with ϵ because of the inf operator. Thus, we can
apply binary search to obtain RCL. The procedure is presented as Certify. More precisely,
we determine whether f is lϵ∞-verified at (x+, x−) with current ϵ. If yes, it means that
(x+, x−) is lϵ∞-verified with an ϵ larger than the current one, then we increase ϵ; otherwise,
we decrease ϵ. The final solution of ϵ is the certified radius RCL.

Note that (13) and (14) are both defined directly on the CL encoder without reference
to any labels or downstream tasks, which resolves the issue articulated in Section 4.1. The
pseudocode is presented in Algorithm 1.

Probabilistic verification for CL For probabilistic verification, motivated by (9), we
define the probability of given x′ = x+ + δ being the positive sample of x+. Since judging
x+ + δ is positive or negtive sample is a binary classification problem, we utilize logistic
function ℓ(v) = (1 + exp(−v))−1 (Section 3.1), which is widely used in binary logistic
regression. Following common RS setting (Cohen et al., 2019), we discuss ℓ2 norm in this
subsection.

11



Wang and Liu

Algorithm 2 Probabilistic verification for CL

1: # judge f is lϵ2-verified at (x+, x−) or not
2: Input: encoder f , positive sample x+, negative sample x−, perturbation bound ϵ, noise

level σ, number of Gaussian samples NG

3: Output: True: f is lϵ2-verified at (x+, x−); False: f is not lϵ2-verified at (x+, x−)
4: Function Predict(f , x+, x−, ϵ, σ, NG)
5: RCL = Certify(f, x+, x−, σ,NG)
6: if RCL > ϵ then return True

7: else return False

8:

9: # compute the certified radius of (x+, x−) on encoder f
10: Input: encoder f , positive sample x+, negative sample x−, noise level σ,

number of Gaussian samples NG

11: Output: certified radius RCL

12: Function Certify(f , x+, x−, σ, NG)
13: Sample NG i.i.d. Gaussian samples x1 · · · , xk ∼ N (x+, σ2I)
14: Compute empirical expectation of (15): p̂+f (x;x

+, x−) =
∑k

i=1 p
+
f (xi;x

+, x−)/NG

15: return RCL = σ · Φ−1(p̂+f (x;x
+, x−))

Definition 5 (Positive sample probability). Given two positive and negative samples x+, x−

∈ X , the feature encoder f : X → Rd, the instance similarity ρ(u, v) = u⊤v/∥u∥2∥v∥2,
temperature τ , the probability of the given input x′ being the positive sample of x+ is defined
as follows:

p+f (x
′;x+, x−) :=

exp(ρ(f(x+), f(x′))/τ)

exp(ρ(f(x+), f(x′))/τ) + exp(ρ(f(x−), f(x′))/τ)

=
1

1 + exp((ρ(f(x−), f(x′))− ρ(f(x+), f(x′)))/τ)
.

(15)

Remark 6. We use the logistic function to translate the numerical relationship of instance
similarity into the probability of being a positive sample. It is motivated by the softmax
function of binary classification, which converts NN output into the probability simplex. We
follow (Chen et al., 2020; Zhai et al., 2020) to define (15) with temperature τ ; τ is used to
control the softness of the probability distribution. When τ tends to 0, p+f (x

′;x+, x−) goes to
1[ρ(f(x′),f(x+))−ρ(f(x′),f(x−))>0].

Recall that when ρ(f(x+), f(x′)) > ρ(f(x−), f(x′)) for any x′ ∈ Bp(x
+, ϵ), the encoder

f is lϵp-verified at (x+, x−) determinately. However, verifying every point in Bp(x
+, ϵ) is

difficult and time-consuming for large and complicated NN. For probability verification,
instead of directly verifying f , we turn to verify amounts of points in Bp(x

+, ϵ). If the
majority of points are the positive sample of x+, we say that f is lϵp-verified with high
probability. We define this intuition formally as follows.

Theorem 7 (Probabilistic verification for CL). Given two positive and negative samples
x+, x− ∈ X , the feature encoder f : X → Rd, let η ∼ N (0, σ2I), if

Eη(p
+
f (x

++η;x+, x−)) > 0.5, (16)

12
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then f is l
RCL
2 -verified at (x+, x−). The certified radius RCL is given by

RCL(f ;x
+, x−) = σ · Φ−1(Eη(p

+
f (x

++η;x+, x−))), (17)

where Φ−1 is the inverse cumulative distribution function of standard Gaussian distribution.

See proof in Appendix A.1. In Theorem 7, instead of directly verifying f , we define a
“smoothed” f whose positive sample probability (15) is the majority vote of f applied to
x+ convolved with some noise distribution. The Gaussian distribution is applied here to
provide ℓ2 verification. We are able to guarantee that the encoder output f(x++η) will not
be recognized as the negative sample within a certain radius RCL, where the magnitude of
this radius is a function of the probability by which the majority vote wins: the more points
vote for lϵp-verified, the larger the certified radius.

The expectation in (17) cannot be exactly solved. Thus, Monte Carlo sampling (Metropo-
lis and Ulam, 1949) is used to estimate the expectation. As a result, the verification is
probabilistic rather than deterministic. The pseudocodes Predict and Certify are pre-
sented in Algorithm 2. Note that RCL ≤ 0 implies p̂+f ≤ 0.5, which means Certify fails to

verify f at (x+, x−).

Robust Radius 𝐑𝐂𝐋

𝑥+

𝑥′

Instance-wise

Adversarial Image

Instance Margin

𝑥
𝑥−

𝑥−

𝑥+

Certified Radius 
𝐑𝐂𝐋

(a) RVCL

𝑥𝑥+

𝑥𝑥′

Label-wise
Adversarial Image

Label Margin

𝑥𝑥

Certified Radius 
𝐑𝐑𝐋𝐋𝐋𝐋

Robust Radius 𝐑𝐑𝐋𝐋𝐋𝐋

(b) Multi-class supervised verification

Figure 2: Illustration for RVCL and multi-class supervised verification. ∥x′ − x∥p must be
larger than the robust radius if x′ is a adversarial sample. It is verified that no
adversarial sample exists in Bp(x,R), R is provided by the incomplete verifier,
which is the lower bound of the robust radius. (a) The latent class of instance-wise
adversarial sample x′ is “dog”, while the feature of x′ is similar to that of x−,
which is an “elephant”. (b) The true label of label-wise adversarial sample x′ is
“dog”, while the prediction of x′ is attacked to “elephant”.

Remark 8. We illustrate RVCL in Figure 2(a). Note that the differences between Figure 2(a)
(RVCL) and Figure 2(b) (supervised verification) are the margin and the type of data points.
The CL framework (we adopt SimCLR (Chen et al., 2020) in our paper) aims to maximize
the agreement between different augmentations of the same image (a.k.a. positive samples),
while minimizing the agreement between negative samples. The data points in the instance
margin are augmentations (rotation, crop, resize, etc.) of the specific image Figure 2(a),
while the data points within the label margin are the images with the same label (Figure 2(b)).
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Robustness metrics for CL This subsection provides two robustness metrics used to
study the robustness of the CL encoder and the performance of incomplete verifiers.

Average certified radius (ACR): For supervised verification, ACR (Zhai et al.,
2020) is an important metric used in evaluating robustness. Specifically, it is the average
of the certified radius on the test dataset. We can define it directly on the supervised
downstream task: ACRLE := 1

|Stest|
∑

(x,y)∈Stest
RLE(g;x, y), where Stest is a labeled test

dataset satisfying g(x) = y for all (x, y) ∈ Stest. However, ACRLE still suffers from the
problems discussed in Section 4.1. We therefore define ACR for CL based on RCL, which
directly reflects the robustness of CL encoder without the label:

Definition 9 (Average certified radius for CL). Given an unlabeled test dataset Utest

generated following Section 3.1, z = (x+, {x−i }Ki=1) ∈ Utest, K is the number of negative
samples, RCL is defined in (14). The average certified radius for CL is defined as follows:

ACRCL :=
1

K|Utest|
∑

z∈Utest

K∑
i=1

RCL(f ;x
+, x−i ). (18)

Certified instance accuracy: For supervised deterministic verification, certified
accuracy is a metric used to evaluate the performance of incomplete verifiers. Wang et al.
(2021) state that the verifier will be stronger if the certified accuracy is the tighter lower bound
of supervised robust accuracy. Since there is no definition of “robust accuracy” provided for
the CL encoder, we propose a novel robust accuracy without label and downstream task for
CL — called robust instance accuracy — based on (11):

Definition 10 (Robust instance accuracy). Given an unlabeled test dataset Utest, z =
(x+, x−) ∈ Utest, we use instance-wise PGD attack (Kim et al., 2020) to generate the
adversarial point x′ ∈ B(x+, ϵ) by maximizing the contrastive loss (1). The robust instance
accuracy with strength ϵ is defined as follows:

Aϵ
CL=

1

|Utest|
∑

z∈Utest

1[ρ(f(x′),f(x+))−ρ(f(x′),f(x−))>0]. (19)

We then define the certified instance accuracy with strength ϵ, which is the fraction of
the test dataset for which f is lϵp-verified at (x+, x−), i.e., f > 0.

Definition 11 (Certified instance accuracy). Given an unlabeled test dataset Utest, z =
(x+, x−) ∈ Utest. The certified instance accuracy with strength ϵ is defined as

Aϵ
CL =

1

|Utest|
∑

z∈Utest

1[f(x+,x−,ϵ)>0]. (20)

f being lϵp-verified at (x+, x−) is the sufficient but not necessary condition of correctly
classifying x′ generated by a specific attack algorithm with attack strength ϵ. This means
that the hold of the judgement condition in (20) implies the hold of that in (19), but not
vice versa. Thus, (20) is the lower bound of (19).
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Remark 12. The certified instance accuracy Aϵ
CL is used to compare the deterministic

verifiers on the CL encoder without labels. The smaller gap between robust instance accuracy
Aϵ

CL and Aϵ
CL implies a stronger incomplete verifier (see experiments in Section 6.3).

However, as Aϵ
CL is a function of the fixed attack strength ϵ, it is difficult to compare the

robustness of two models unless one is uniformly better than the other for all strength ϵ.
What’s more, ACRCL can be applied to both probabilistic and deterministic verification. Thus,
ACRCL is a more suitable choice than Aϵ

CL for evaluating the robustness of CL encoders.

5 Analysis of Robust Radius

What is the relationship between the robust radius RCL and RLE? This section demonstrates
that RCL is the upper bound of RLE, which is further verified by the experimental results in
Section 6.1.

To provide the main insights, we first consider the situation in which only one positive
sample is used. Formally, given an unlabeled sample z = (x+, {x−i }Ki=1), we introduce the
margin distance of x+ as half of the minimum distance between f(x+) and f(x−i ), defined
as M := mini∈[K]Di, where Di := (1− ρ(f(x+), f(x−i ))/2.

The idea is to estimate the lower tail of the distribution of M by fitting the λ smallest
Di of the negative samples x−i . We can then use this estimated distribution to produce the
probability of a new point x falling into the margin of x+, which can be interpreted as the
probability of x being a positive sample of x+. x is classified as a positive sample of x+ if it
is inside the margin of x+ with high probability.

To estimate the distribution of the margin distance, we turn to the Fisher-Tippett-
Gnedenko Theorem in extreme value theory (see the complete statement in Theorem 21).

Lemma 13 (Fisher-Tippett-Gnedenko theorem (Coles et al., 2001)). Let X1, X2, . . . be
a sequence of independent random variables with common distribution function F . Let
Mn = sup(X1, . . . , Xn). If there exists a sequence an > 0, bn ∈ R such that

lim
n→∞

P(
Mn − bn

an
≤ z) = G(z),

where G is a non-degenerate distribution function, then G belongs to either the Gumbel
family, the Fréchet family or the Reverse Weibull family.

The theorem states that the maximum of a sequence of i.i.d. random variables after
proper normalization can only converge to one of three possible distributions.

Theorem 14 (Margin distribution). Assume a continuous non-degenerate margin distribu-
tion exists. The distribution for margin distance M is then given by the Reverse Weibull
distribution. The probability of x being a positive sample of x+ is given by the following:

Ψ(x;x+, α, σ) = exp

{
−
(
1− ρ(f(x), f(x+))

σ

)α}
,

where ρ(f(x), f(x+)) is the instance similarity between x and x+. α, σ > 0 are Weibull
shape and scale parameters, obtained from fitting to the λ smallest margin distances Di.
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See proof in Appendix A.3. Theorem 14 demonstrates that the probability of x being a
positive sample can be given by the Reverse Weibull distribution fitting on finite samples.
This enables us to compare the robust radius of the encoder and that of the downstream
task. Intuitively, if the classifier can predict correctly with higher confidence, this implies
that the classifier provides better verified robustness.

Theorem 15 (Robust radius bound). Given an encoder f : X → Rd and an unla-
beled sample z = (x+, {x−i }Ki=1), the downstream predictor g : Rd → R is trained on

Ŝ = {(f(x+), yc+), (f(x−i ), yc−)Ki=1}. Then, for different negative samples x−i , we have

RCL(f ;x
+, x−i ) ≥ RLE(g;x

+, yc+).

Proof Sketch The probability of downstream layer predicting x as positive can be given
by ΨLE, which is fitted from margin distances {Di}Ki=1 computed by Ŝ. ΨCL is fitted from
specific Di, since RCL(f ;x

+, x−i ) is the robust radius between specific pair of positive and
negative sample.

Figure 3 plots the cumulative distribution function (CDF) of ΨCL and ΨLE. Ψ → 1
when x → x+, which means x is very likely to be the positive sample of x+. If there
exists negative samples between x−i and x+ (“−” in Figure 3), then ΨLE will fit to these
negative samples and make CDF grows slower than ΨCL, i.e., ΨCL(x) ≥ ΨLE(x). Theorem 24
offers the correspondence that a higher probability to be a positive sample implies a larger
robust radius, which recovers the theorem statement. See complete proof in Appendix A.4.

0
𝑥𝑥+

ΨCL ΨLE

𝑥𝑥𝑖𝑖− 𝑥𝑥

1 Probability

Figure 3: Probability of x as a positive sample. “−”: the negative sample other than x−i .

Remark 16. Theorem 15 implies that improving the robustness of the CL encoder enlarges
the robust radius RCL, which can benefit the robustness of the downstream layer by providing
a large upper bound of RLE. A larger RCL implies that the model will achieve a higher robust
performance on the downstream task; thus, it is reasonable to regard RCL as a robustness
metric.

Intuitively, an incorrect prediction will be more easily produced when there are many
classes to attack, which implies a lower robust radius than that of binary classification.
Theorem 17 demonstrates that the multi-class classifier is more fragile than a binary classifier
under perturbation. We present the multi-class experimental results in Section 6.1.
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Theorem 17 (Multi-class case). gM is trained on the labeled dataset with p+ 1 classes, gj
is the binary classifier of the specific latent class pair (c+, c−j ), j ∈ [p]. Then, for different

negative samples x−ij and latent class pairs (c+, c−j ), we have

RCL(f ;x
+, x−ij) ≥ RLE(gj ;x

+, yc+) ≥ RLE(gM ;x+, yc+).

We prove the theorem by constructing multiple margin distributions Ψj for every class.
See proof in Appendix B.2.

In the above, we discuss the decision margin by analyzing the case with single x+ and
multiple x−. Here, we discuss the robust radius of different x+ by making the following
theroem:

Theorem 18. Given an encoder f : X → Rd, two positive samples x+1 , x
+
2 and one negative

sample x−, if ρ(f(x+1 ), f(x
−)) ≥ ρ(f(x+2 ), f(x

−)), then

RCL(f ;x
+
1 , x

−) ≤ RCL(f ;x
+
2 , x

−).

See proof in Appendix A.5. Theorem 18 proves that if f(x+) is similar to f(x−), it is
easy to recognize the adversarial sample x′ of x+ as a negative sample. In Section 6.2, we
empirically show that a vague image for which it is difficult to identify the class characteristic
is easy to attack.

6 Experiments

In this section, we verify the effectiveness of our proposed RVCL by means of numerical
experiments. More specifically, Section 6.1 demonstrates the effectiveness of the average
certified radius for CL. Section 6.2 shows that ACRCL can evaluate the anti-disturbance
ability of individual images. Section 6.3 compares the strength of deterministic verifiers to
illustrate the effectiveness of RVCL. Section 6.4 provides the efficiency analysis for RVCL.
Section 6.5 provides the sensitivity analysis for parameters in RVCL.

Set-up. SimCLR (Chen et al., 2020) and RoCL (Kim et al., 2020) are used in this
paper for CL training and contrastive AT, respectively. Contrastive AT is trained with
instance-wise adversarial samples with different attack strengths ϵtrain; ϵtrain = 0 indicates
that the encoder is trained with benign images.

For deterministic verification, the experiments utilize four architectures: Base, Deep
from Wang et al. (2021), CNN-A, CNN-B from Dathathri et al. (2020), from which
the last layer is removed to form the CL encoders. Using the same dataset as in previous
deterministic verification works, all CL encoders are trained on Mnist (LeCun and Cortes,
2010) and CIFAR-10 (Krizhevsky and Hinton, 2009). Further details of the models and
experimental settings are presented in Appendix E.

We utilize two incomplete verifiers with different verified tightness in the RVCL framework:
CROWN (Zhang et al., 2018) and CBC (β-CROWN (Wang et al., 2021) for CL). A more
detailed introduction to incomplete verifiers is presented in Appendix C.

For probabilistic verification, we use ResNet-18 and ResNet-50 (He et al., 2016) as
the base encoder NN, which are trained on CIFAR-10 and CIFAR-100 (Krizhevsky and
Hinton, 2009). The training and evaluation details of contrastive adversarial training are
consistent with Kim et al. (2020).
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6.1 Average certified radius

In this section, we study the robustness of CL encoders with different structures via average
certified radius (ACR in Section 4.2). The experimental results show that ACR is an effective
robustness metric for deterministic and probabilistic verification, and reveals the robustness
properties of both two verifications.

For deterministic verification (Figure 4), we compute ACR over 100 test samples (i.e.,
|Stest| = |Utest| = 100) following previous verification works (Zhang et al., 2018; Weng
et al., 2018a; Wang et al., 2021; Shi et al., 2022). For ACRCL, we set the number of negative
samples K = 10. In the interests of efficiency, we use CROWN to compute the ACRCL,
which is discussed further in Section 6.4.

For probabilistic verification (Table 1), we use 100 and 500 test samples for CIFAR-10
and CIFAR-100, respectively. We set K = 10, noise level σ = 0.1, number of Gaussian
samples NG = 256, and temperature parameter τ = 0.1.
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Figure 4: Results for deterministic verification. (a,b) ACRCL and ACRLE on Mnist and
CIFAR-10 with different values of ϵtrain. (c,d) Supervised robust accuracy on
the downstream classifier under PGD attack and AutoAttack(AA). On Mnist,
attack strengths ϵtest are 0.15, 0.2; on CIFAR-10, attack strengths ϵtest are 8/255,
16/255. Clean represents testing with benign images. (a,c) run on CNN-A, (b,d)
run on CNN-B.
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Table 1: ACR and Supervised robust test (under PGD attack and AutoAttack(AA)) with
different values of ϵtrain for probabilistic verification. The attack strength ϵtest of
robust accuracy is 16/255.

Dataset Model ϵtrain
ACRCL ACRLE Clean PGD AA

(×10−2) (×10−3) Acc (%) Acc (%) Acc (%)

CIFAR-10

ResNet-18

0 0.832 1.24 84.8 0.15 0

2.2/255 2.57 4.87 80.4 11.2 7.37

4.4/255 4.67 6.54 77.3 18.3 15.0

8.8/255 5.71 9.39 75.5 22.8 19.7

ResNet-50

0 1.58 2.28 88.2 0.25 0

2.2/255 2.43 6.94 83.5 15.9 10.7

4.4/255 3.30 8.19 81.1 21.6 16.2

8.8/255 4.06 9.81 79.2 24.5 19.3

CIFAR-100 ResNet-18

0 1.60 0.085 56.4 0 0

2.2/255 3.56 0.102 53.2 4.58 2.81

4.4/255 4.69 0.249 50.8 8.96 6.32

8.8/255 5.86 0.426 47.7 12.6 9.72

To determine whether the model robustness benefits from the encoder or linear classifier,
we fix the encoder and fine-tune the downstream layer with benign images without pertur-
bations. For the empirical robust test, we utilize supervised robust accuracy on the whole
test dataset; this is the downstream accuracy over adversarial samples via label-wise PGD
attack (Madry et al., 2018) and AutoAttack (Croce and Hein, 2020b) with attack strength
ϵtest. Autoattack is an ensemble of four strong diverse attacks: APGD-CE, APGD-DLR,
FAB (Croce and Hein, 2020a), and Square Attack (Andriushchenko et al., 2020), which has
been proven to be reliable in evaluating the robustness (Croce et al., 2021).

Note that a larger value of ϵtrain implies that a more robust encoder is obtained by
contrastive AT. From the experimental results of deterministic (Figure 4) and probabilistic
verification (Table 1), we make following observations:

1. The results in Figure 4(a,b) show that ACRCL and ACRLE increase with increasing
ϵtrain on the two datasets.

2. For deterministic verification (Figure 4), AutoAttack brings a 5-7% drop in robust
accuracy compared to PGD attack, while probabilistic verification experiences a 2-5%
drop (Table 1). This drop is due to AutoAttack being a stronger attacker than PGD.

3. Figure 4(c,d) show that with different values of ϵtest, supervised robust accuracies
under PGD attack and AutoAttack increase as ϵtrain increases. Table 1 shows the
same tendency.

From these observations, we can conclude that:
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Table 2: Sample Pearson correlation coefficient (PCC) between ACR and supervised robust
accuracy (under PGD attack and AutoAttack(AA)). The attack strength ϵtest of
robust accuracy is 0.15 for Mnist, and 16/255 for CIFAR-10 and CIFAR-100.

Verification Dataset Model
PGD AA

rCL rLE rCL rLE

Deterministic
Mnist CNN-A 0.963 0.996 0.961 0.994

CIFAR-10 CNN-B 0.998 0.966 0.996 0.939

Probabilistic
CIFAR-10

ResNet-18 0.990 0.987 0.997 0.986

ResNet-50 0.943 0.995 0.970 0.993

CIFAR-100 ResNet-18 0.994 0.938 0.982 0.966

1. It is effective to measure the robustness using ACRCL without labels and downstream
tasks, because both the ACRCL and supervised metric (ACRLE and robust accuracy)
grow consistently with increasing ϵtrain.

2. Figure 4(a,b), “ACRCL”, “ACRLE” columns in Table 1 show that ACRCL is larger than
ACRLE with the same ϵtrain, which supports our theory: Theorem 17 demonstrates
that RCL is the upper bound of RLE, while ACRCL and ACRLE are related to RCL

and RLE respectively.

3. A robust encoder can significantly improve the model’s robust performance on down-
stream tasks, since ACRLE grows with increasing ϵtrain even though the downstream
layer is learned on benign images.

Pearson correlation coefficient To further assess the efficacy of ACR as a robustness
metric, we computed the sample Pearson correlation coefficient (PCC) between ACR and
supervised robust accuracy in Table 2. PCC measures the linear correlation between two
sets of data. rCL and rLE denote the sample PCC between ACRCL/ACRLE and supervised
robust accuracy, respectively. The results in Table 2 are calculated using the data in Figure 4
and Table 1.

As shown in Table 2, all rCL and rLE values exceed 0.9, indicating a strong positive
relationship between ACR and supervised robust accuracy. In Line 2, 3, 5 of Table 2,
the unsupervised metric ACRCL exhibits an even stronger positive relationship than the
supervised metric ACRLE. These findings confirm that ACRCL effectively evaluates the
robustness of the CL encoder.

Adversarially trained downstream layer ϵtrainLE denotes adversarial training strength
for the downstream layer. In prior work (Kim et al., 2020; Ho and Vasconcelos, 2020;
Jiang et al., 2020; Fan et al., 2021), the downstream layer was trained on clean samples
(ϵtrainLE = 0) for linear evaluation. We further conduct experiments with adversarially
trained downstream layers on CL encoders, comparing their properties (ACR, clean and
robust accuracy).
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Figure 5: ACRCL and ACRLE

with respect to vari-
ous strengths ϵtrainLE

for downstream layer.

Table 3: Robust accuracy on adversarially trained down-
stream layer with strength ϵtrainLE . The encoder
is trained with clean samples (ϵtrain = 0) or ad-
versarial samples with attack strength ϵtrain.

ϵtrainLE
= 0.05 ϵtrainLE

= 0.15

ϵtest Clean 0.15 0.2 Clean 0.15 0.2

ϵtrain = 0 96.9% 0% 0% 94.7% 87.2% 1.95%

ϵtrain = 0.1 95.5% 86.2% 1.65% 94.3% 90.8% 81.9%

ϵtrain = 0.2 94.1% 90.0% 88.3% 93.6% 91.3% 89.6%

Figure 5 displays ACRCL and ACRLE for various ϵtrainLE values. Table 3 presents
supervised clean and robust accuracy on downstream layers. The attack strength ϵtest of
robust accuracy is 0.15 or 0.2. ϵtrainLE is set to 0.05 or 0.15. Experiments run on Mnist.
From experimental results, we conclude that:

1. Adversarial training for the downstream layer enhances model robustness. Figure 5
and Table 3 illustrate that as ϵtrain for the encoder and ϵtrainLE for the downstream
task increase, both ACR and supervised robust accuracy improve.

2. Figure 5 demonstrates that ACRLE consistently grows with increasing ϵtrainLE , but
a gap remains with ACRCL. This affirms that RCL ≥ RLE (Theorem 15) still holds
when the downstream task is adversarially trained.

6.2 Anti-disturbance ability of images

To study the robustness property of each image, in this subsection, we compute ACRCL for
a single test sample; i.e., |Utest| = 1, then ACRCL := 1

K

∑K
i=1RCL(f ;x

+, x−i ).
We sample two images from CIFAR-10, as shown in Figure 6(b). The above image

is labeled as deer, which is vague and makes it difficult to identify the latent class. The
below image is labeled as dog, which is much clearer than deer. We calculate RCL with
fifty negative samples (K = 50). Our findings suggest that the RCL of deer is significantly
smaller than that of dog ; this means that the distance between the feature of deer and its
negative samples is smaller than that between the feature of dog and its negative samples,
which supports our Theorem 18. We can therefore conclude that the anti-disturbance ability
of dog is stronger than that of deer, which means that dog is lϵ∞-verified with a larger ϵ than
deer. We sample 10 more images from CIFAR-10, and plot the images and their ACRCL in
Figure 6(a). It comes to the same conclusion: the vague image which is difficult to identify
the latent class has a low ACRCL. These results verify that ACRCL is able to quantify the
anti-disturbance ability of images.

We further visualize the distribution of ACRCL for 500 images from CIFAR-10 and
CIFAR-100 by calculating ACRCL with K = 20, and additionally provide the kernel density
plot to show the distribution (see Figure 6(c,d)). Figure 6(c) is given by deterministic
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Figure 6: The models are trained with ϵtrain = 4.4/255. (a,b,c) run on CNN-B, (d) run on
ResNet-18. (a) ACRCL for images, which are randomly chosen from CIFAR-10;
K = 50. (b) RCL for two images from CIFAR-10; K = 50. (c,d) Frequency
distribution histogram and kernel density estimation (KDE) of ACRCL for 500
images; (c) KDE for CIFAR-10 given by deterministic verification; (d) KDE for
CIFAR-100 given by probabilistic verification.

verification, about 90% of images’ ACRCL are distributed within the range [0.044, 0.093],
concentrated around 0.07. We use probabilistic verification with σ = 0.1, NG = 256, τ = 0.1
to plot Figure 6(d). Recall that RCL < 0 means the verifier fails to verify f at (x+, x−).
About 90% ACRCL are distributed within [−0.028, 0.19], concentrated around 0.065; 84.6%
images are verified successfully.

6.3 Tightness of deterministic verification

In this subsection, we illustrate that RVCL is an effective verification framework by comparing
the strength of different deterministic verifiers.

Certified instance accuracy Refer to Theorem 12, we use the certified instance accu-
racy (Aϵ

CL in Theorem 11) to compare the strength of deterministic verifiers on the CL
encoder without labels. We study the performance of incomplete verifiers via Aϵ

CL. Table 4
summarizes the results of certified instance accuracy provided by our proposed RVCL on
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Table 4: Complete comparison of certified instance accuracy across various networks and
attack strength ϵtest. The number of test samples |Utest| = 100. CBC uses 3
minutes for each sample.

Dataset ϵneg ϵtest Model ϵtrain

Instance Certified

Accuracy Instance Accuracy

PGD CBC CROWN

Mnist

0.3 0.1

Based
0

20% 2% 0%

CNN-A 6% 0% 0%

Based
0.1

100% 100% 100%

CNN-A 100% 100% 99%

0.5 0.3
Based

0.3
100% 98% 42%

CNN-A 100% 85% 3%

CIFAR-10
16
255

2
255

CNN-B

0 100% 97% 96%

2.2
255

100% 100% 100%

4
255

91% 26% 11%
4.4
255

100% 55% 34%
8.8
255

100% 68% 52%

Based
4.4
255

100% 99% 95%

Deep 100% 96% 84%

CNN-A 99% 91% 81%
8

255

CNN-B

8.8
255

1% 0% 0%

24
255

6
255

4.4
255

100% 8% 2%
8.8
255

100% 24% 11%

Mnist and CIFAR-10. In order to control the similarity ρ(f(x−), f(x′)) between x′ and
x−, we generate the negative sample x− via instance-wise PGD attack (Kim et al., 2020)
with strength ϵneg which is much larger than ϵtest. The two incomplete verifiers we utilize
herein are CROWN and CBC; CBC is the state-of-the-art verifier, which is more powerful
than CROWN for supervised verification (Wang et al., 2021).

Aϵ
CL is the lower bound of the robust instance accuracy Aϵ

CL (Theorem 10, obtained
by instance-wise PGD attack). The tighter lower bound given by Aϵ

CL indicates a stronger
incomplete verifier. Table 4 shows that the gap between Aϵ

CL given by CBC and Aϵ
CL given

by PGD is smaller than that between CROWN and PGD on both Mnist and CIFAR-10
datasets, which shows that CBC is a stronger verifier than CROWN. The results demonstrate
the efficacy of our proposed RVCL: a stronger supervised verifier can still achieve a tighter
certified radius in the RVCL framework.

From Table 4, we can also make the following observations and remarks:

Influence of ϵtest: If ϵtest is small, the certified instance accuracy Aϵ
CL of both

CROWN and CBC approach the robust instance accuracy Aϵ
CL given by instance-wise PGD.

However, the gap between CROWN and CBC becomes large as ϵtest increases. The results
show that CBC is a more powerful verifer than CROWN. The reason for this is that CBC
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Figure 7: Comparing the tightness of verifiers. For 100 test samples (|Utest| = 100)
on Mnist and CIFAR-10. We plot the verified lower bound f(x+, x−, ϵ) against

PGD upper bound f . Some points exceed the plotted axes limits.

optimizes the intermediate layer bounds and then iteratively tightens the lower bound. We
can further observe that instance-wise PGD successfully attacks the model on all images of
CIFAR-10 under ϵtest = 8/255.

Remark 19. The results in Table 4 often achieve a high robust instance accuracy Aϵ
CL.

The direct reason is that the instance-wise attack is more difficult than the label-wise attack.
Theoretically, Theorem 15 shows that the robust radius RCL ≥ RLE. This implies that one
may label-wise attack an image successfully with a small ϵtest, but that it is nearly impossible
to successfully instance-wise attack with the same small ϵtest, which results in a high robust
instance accuracy. Figure 4(b) experimentally certifies this conclusion, ACRCL is an order of
magnitude larger than ACRLE. However, without loss of effectiveness, we can still evaluate
the tightness of verifiers by comparing the gap between Aϵ

CL and Aϵ
CL.

Influence of ϵtrain: The certified instance accuracy Aϵ
CL increases with increasing

ϵtrain (consistent with Figure 4(c,d)), which demonstrates that Aϵ
CL can also evaluate the

model robustness. Howerver, as we discuss in Theorem 12, Aϵ
CL is a function of specific

attack strength ϵtest, it’s hard to compare the robustness of two models by comparing Aϵ
CL

of various values of ϵtest. Thus ACRCL is a more suitable choice to campare models with
different robust performance.

Illustration of verified lower bound f We can also evaluate the strength of deterministic
verifiers by the verified lower bound f . Instance-wise PGD attack (Kim et al., 2020) provides

the upper bound of minimum distortion, f ≥ f̃ , while deterministic verifier provides the
lower bound, f̃ ≥ f(x+, x−, ϵ). Distinguish from supervised verification (Dathathri et al.,
2020; Wang et al., 2021), all distortion here is instance-wise. The closer the verified lower
bound f(x+, x−, ϵ) is to the PGD upper bound f (y = x in Figure 7), the stronger the
verifier would be.

As Figure 7 shows, the points above the dotted line are successfully verified. CBC achieves
tight verification across all samples, and furthermore consistently outperforms CROWN on
Mnist and CIFAR-10. This conclusion is consistant with Table 4 and supervised verification
results (Wang et al., 2021), which further demonstrates the effectiveness of RVCL.
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Figure 8: ACRCL given by CBC and CROWN on
Mnist (Left) and CIFAR-10 (Right).
|Utest| = 100, K = 10.

Time(s) CROWN CBC

Mnist 1.16 464.52
CIFAR-10 3.66 921.78

Table 5: Average verification time
per image, the number of
negative samples K = 5,
and timeout is set to 0.3.
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Figure 9: Sensitivity analysis of the number of Gaussian samples NG for probabilistic
verification. Left: NG influencing ACRCL. Right: NG influencing average
verification time per image. Experiments run on CIFAR-10 and ResNet-18.

6.4 Efficiency of verification

In this subsection, we explore key factors within RVCL that can affect verification efficiency.

Efficiency of deterministic verifiers Section 6.1 and Section 6.2 use CROWN to
compute the certified radius ACRCL in the interests of efficiency. This subsection shows
that CBC achieves similar ACRCL with CROWN, but takes more time than CROWN.

Timeout is set to 0.3s for each step of CBC binary search. CNN-A is run on Mnist and
CNN-B is run on CIFAR-10. The experimental setting of Figure 8 is the same with that in
Section 6.1. Table 5 provides the average time to caculate ACRCL over 20 images.

The results in Figure 8 show that ACRCL over Utest provided by CBC and CROWN
is nearly the same, and both of them show the tendency of robust performance. This is
because the time for each step of binary search is too short for CBC to tighten the lower
bound. However, Table 5 shows that the time cost of CBC is about 300 times slower than
CROWN, even using a small value of timeout for CBC. Therefore, we conclude that CBC
is able to achieve a tight bound, but CBC is time-consuming in computing RCL, and it is
reasonable to use CROWN to compute ACRCL of models and images.

The number of Gaussian samples NG We conducted experiments (Figure 9) to examine
how the number of Gaussian samples NG affects both ACRCL and probabilistic verification
time per image. Our investigation spanned a wide range of NG, from 20 to 212(4096). Larger
NG provides a more accurate estimation of the empirical expectation of p+f in (15). As
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Figure 10: Sensitivity analysis of RVCL. Left: feature dimension influencing ACRCL of
deterministic verification. Middle and Right: the number of negative samples
K influencing ACRCL of deterministic and probabilistic verification, respectively.

shown in Figure 9(Left), ACRCL exhibits efficacy regardless of the chosen value for NG, as
ACRCL for ϵtrain = 4.4/255 consistently remains lower than that for ϵtrain = 8.8/255 across
various NG. Figure 9(Left) also indicates that ACRCL stabilizes when NG exceeds 256, while
Figure 9(Right) reveals exponential verification time growth when NG > 128. To ensure
both stable ACR and efficient computation, we set NG = 256 for probabilistic verification.

6.5 Sensitivity analysis

Deterministic verification We conduct a sensitivity analysis for deterministic verification
to examine the effect of hyperparameters. Experiments run on CNN-B with different ϵtrain
on CIFAR-10.

Feature dimension: We investigate the influence of the feature dimension on ACRCL

(see Left of Figure 10). From the result, we can determine that ACRCL increases slightly
with the growing feature dimension, then remains stable on dimensions larger than 150. The
results illustrate that ACRCL is not sensitive to feature dimension.

Number of negative samples: We validate the influence of the number of negative
samples K on ACRCL (see Middle of Figure 10). The result shows that ACRCL is not
sensitive to K with different ϵtrain, which means that we can use small values of K to
efficiently evaluate the model robustness or the anti-disturbance ability of an image. We set
K = 10 throughout the experiments.

Probabilistic verification In this subsection, experiments run on CIFAR-10 with
different ϵtrain, NG = 256.

Number of negative samples: Similarly to the deterministic verification, we evaluate
the effect of different numbers of negative samples K on ACRCL (see Right of Figure 10).
Experiments run on ResNet-18 with ϵtrain = 4.4/255, 8.8/255. The results show that ACRCL is
also not sensitive to K with different values of ϵtrain. We set K = 10 for consistency with
deterministic verification.

Noise level σ: Experiments for Figure 11 run on ResNet-50 with ϵtrain = 4.4/255.
Figure 11(a,b) plots the average of positive sample probability p̂+f (Theorem 5) and ACRCL

with respect to the noise level σ. Recall that ACRCL is a function of p̂+f (Theorem 7). From

Figure 11(a), we observe that p̂+f decreases as σ increases. p̂+f decreases to 0.5 when σ is
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Figure 11: Sensitivity analysis for probabilistic verification. (a,b) noise level σ influencing
average probability p+f and ACRCL. (c,d) temperature τ influencing average

probability p+f and ACRCL.

large (σ = 0.25), which means the verifier degenerates to the random guess and fails to
verify. This is because σ = 0.25 is a large noise level and models perform poorly to recognize
the positive sample. σ = 0.1 is the best to distinguish the encoders with different robustness,
thus we choose σ = 0.1 in Section 6.1 to evaluate the CL encoder by ACRCL.

Temperature τ : In Figure 11(c,d), we illustrate p̂+f and ACRCL with respect to the

temperature τ in (15). When τ → 1, p̂+f → 0.5 and ACRCL → 0. This is because the margin

between ρ(f(x′), f(x+)) and ρ(f(x′), f(x−)) is small when τ → 1. We choose τ = 0.1 in
Section 6.1 consistent with (Chen et al., 2020).

7 Conclusion

In this paper, we tackle both deterministic and probabilistic robustness verification problems
for CL without labels, and accordingly propose a novel RVCL framework that does not
depend on any class labels, downstream tasks or specific attack algorithms. We then use
extreme value theory to reveal the quantitative relationship between the robust radius of
the CL encoder and that of the downstream task. All our experiments show that RVCL
is an efficient robustness framework for CL encoders, and can also be used to evaluate the
anti-disturbance ability of images. Moreover, our experimental results verify our theoretical
analysis. We believe that RVCL is a novel perspective from which to understand robustness
on contrastive learning.
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Appendix A. Proofs

A.1 Proof of Theorem 7

Theorem 7 (Probabilistic verification for CL). Given two positive and negative samples
x+, x− ∈ X , the feature encoder f : X → Rd, let η ∼ N (0, σ2I), if

Eη(p
+
f (x

++η;x+, x−)) > 0.5, (21)

then f is l
RCL
2 -verified at (x+, x−). The certified radius RCL is given by

RCL(f ;x
+, x−) = σ · Φ−1(Eη(p

+
f (x

++η;x+, x−))), (22)

where Φ−1 is the inverse cumulative distribution function of the standard Gaussian distribu-
tion.

The proof is based on the following lemma:

Lemma 20. For any measurable function f : X → [0, 1], define f̂(x) = Eη∼N (0,σ2I)f(x+ η),

then x 7→ Φ−1(f̂(x)) is 1/σ-Lipschitz.

This lemma is the generalized version of Lemma 2 in Salman et al. (2019). Then we
formally prove Theorem 7.
Proof p+f (x;x

+, x−) is the probability of x being a positive sample of x+ (Theorem 5). We

define p̂+f as:

p̂+f (x;x
+, x−) = Eη∼N (0,σ2I)(p

+
f (x+ η;x+, x−)). (23)

We simply use p̂+f (x) to refer to p̂+f (x;x
+, x−) when the context is clear. By Theorem 20,

we know that under any perturbation δ of x+,

Φ−1(p̂+f (x
+))− Φ−1(p̂+f (x

+ + δ)) ≤ ∥δ∥2
σ

. (24)

For an adversarial perturbation δ, Φ−1(p̂+f (x
++δ)) ≤ 0.5, leading to Φ−1(p̂+f (x

+)) ≤ ∥δ∥2
σ ,

i.e.,
RCL(f ;x

+, x−) = σ · Φ−1(p̂+f (x
+)). (25)

A.2 Extreme Value Theory

Before provding the proofs of main results, we first provide two important lemmas in extreme
value theory (EVT).

Lemma 21 (Fisher-Tippett-Gnedenko theorem (Coles et al., 2001)). Let X1, X2, . . . be
a sequence of independent random variables with common distribution function F . Let
Mn = max(X1, . . . , Xn). If there exists a sequence an > 0, bn ∈ R such that

lim
n→∞

P(
Mn − bn

an
≤ z) = G(z), (26)
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where G is a non-degenerate distribution function, then G belongs to either the Gumbel
family (Type I), the Fréchet family (Type II) or the Reverse Weibull family (Type III) with
their CDFs as follows:

Gumbel family (Type I): G(z) = exp
{
− exp

[
−
(z − b

a

)]}
, z ∈ R,

Fréchet family (Type II): G(z) =
{ 0, if z < b,

exp
{
−
(
z−b
a

)−α}
, if z ≥ b,

Reverse Weibull family (Type III): G(z) =
{

exp
{
−
(
b−z
a

)α}
, if z < b,

1, if z ≥ b,

where a > 0, b ∈ R and α > 0 are the scale, location and shape parameters, respectively.

Theorem 21 states that the rescaled sample maxima (Mn−bn)/an converge in distribution
to a variable that has a distribution within one of three families. Furthermore, these three
families can be combined into a single family called generalized extreme value (GEV)
distribution, which is a family of continuous probability distributions developed within
extreme value theory. The Gumbel, Fréchet and Reverse Weibull families are special cases
of GEV distribution.

Lemma 22 (Generalized Extreme Value (GEV) distribution (Coles et al., 2001)). Let
X1, X2, . . . be a sequence of i.i.d. samples from the distribution function F . Let Mn =
max(X1, . . . , Xn). If there exists a sequence an > 0, bn ∈ R such that limn→∞ P(Mn−bn

an
≤

z) = G(z), then if G is a non-degenerate distribution function, it belongs to the class of
generalized extreme value (GEV) distributions with

G(z) = exp

[
−
{
1 + ξ

(
z − µ

σ

)}−1/ξ
]
, (27)

where z ∈ R : 1 + ξ
( z−µ

σ

)
> 0, ξ ∈ R, µ ∈ R and σ > 0 are the shape, location and scale

parameters, respectively.

As the special case, the Reverse Weibull family in Theorem 21 can be derived by
Theorem 22, which let ξ < 0 and the upper endpoint of F be denoted by b, then α = −1/ξ > 0.

A.3 Proof of Theorem 14

Theorem 14 (Margin distribution). Assume a continuous non-degenerate margin
distribution exists. The distribution for margin distance M is then given by the Reverse
Weibull distribution. The probability of x being a positive sample of x+ is given by the
following:

Ψ(x;x+, α, σ) = exp

{
−
(
1− ρ(f(x), f(x+))

σ

)α}
, (28)

where ρ(f(x), f(x+)) is the instance similarity between x and x+. α, σ > 0 are Weibull
shape and scale parameters, obtained from fitting to the λ smallest margin distances Di.
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Proof From the assume we know that G(z) in Theorem 21 exists. Since Theorem 21 applies
to maxima, we transform the variables via M = maxi∈[K]−Di, Di := (1−ρ(f(x+), f(x−i ))/2.

Because −Di is bounded (−Di < 0), so the asymptotic distribution of M converges to the
Reverse Weibull distribution:

W (z) =

exp
{
−
(
− z

σ

)α}
, if z < 0,

1, if z ≥ 0,
(29)

where α > 0, b is the upper endpoint of F , σ is the scale parameters. b = 0 in (29) since M
is bounded above by 0 as a negative distance. We use margin distances Di of the λ closest
samples with x+ to estimate the parameters α and σ, which means to estimate Ŵ of the
distribution funstion W .

The margin distance between x and x+ defined as 1− ρ(f(x), f(x+)). Then we focus on
the probability of x included in the margin of x+, which can be written as:

P(1− ρ(f(x), f(x+)) < min(D1, . . . , Dn))

=P(−min(D1, . . . , Dn) < ρ(f(x), f(x+))− 1)

=P(max(−D1, . . . ,−Dn) < ρ(f(x), f(x+))− 1)

=P(M < ρ(f(x), f(x+))− 1)

=Ŵ (ρ(f(x), f(x+))− 1).

(30)

Since ρ(f(x), f(x+))− 1 < 0, we can rewrite (30) as (28). We conclude our proof.

A.4 Proof of Theorem 15

Theorem 15 (Robust radius bound). Given an encoder f : X → Rd and an
unlabeled sample z = (x+, {x−i }Ki=1), the downstream predictor g : Rd → R is trained on

Ŝ = {(f(x+), yc+), (f(x−i ), yc−)Ki=1}. Then, for different negative samples x−i , we have

RCL(f ;x
+, x−i ) ≥ RLE(g;x

+, yc+). (31)

Before we formally prove Theorem 15, we first provide the following two lemmas.
Theorem 23 focuses on a model for the k largest order statistics. It extends the result in

Theorem 21 to extreme order statistics, by defining M
(k)
n = k-th largest of {X1, . . . , Xn} and

further identifying the limiting behavior of this variable, for fixed k, as n → ∞. Theorem 23
implies that, if the k-th largest order statistic is normalized in exactly the same way as the
maximum, then its limiting distribution is of the form given by (33).

Lemma 23 (k-th largest order statistic (Coles et al., 2001)). Let X1, X2, . . . be a sequence of
i.i.d. samples from the distribution function F . Let Mn = max(X1, . . . , Xn). If there exists
a sequence an > 0, bn ∈ R such that limn→∞ P(Mn−bn

an
≤ z) = G(z) for a non-degenerate

distribution function G, so that G is the GEV distribution function given by (27), then, for
fixed k,

lim
n→∞

P((M (k)
n − bn)/an) = Gk(z) (32)
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on {z : 1 + ξ(z−µ)
σ > 0}, where

Gk(z) = exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
(33)

with τ(z) =
{
1 + ξ

( z−µ
σ

)}−1/ξ
.

Intuitively, the classifier predicting correctly with higher confidence implies that the
classifier can provide better certified robustness. Theorem 24 provides this relationship
directly.

Lemma 24 (Robust radius (Yang et al., 2020)). The robust radius in any norm ∥ · ∥ is at
least

R :=

∫ 1/2

1−λ

1

Φ(p)
dp, (34)

where Φ(p) := sup∥v∥=1 supU⊆Rd:q(U)=p limr↘0
q(U−rv)−p

r , λ is the probability that the binary
classifier predicts the right label under perturbation, q(U) is the measure of U under q, i.e.
q(U) = Prδ∼q(δ ∈ U), v is the perturbation vector.

Finally, we prove Theorem 15.

Proof ΨLE is obtained from fitting to margin distances {Di}Ki=1, Di := (1−ρ(f(x+), f(x−i ))/2.
From Theorem 21 we know that (28) is the Reverse Weibull distribution and can be written
as the form of (27):

ΨLE(x;x
+, α, σ) = exp

[
−
{
1 + ξ

(
z − µ

σ

)}−1/ξ
]

(35)

with z = −D = ρ(f(x), f(x+))− 1.

RCL(f ;x
+, x−i ) is defined on the positive and negative sample pair (x+, x−i ); it means

that ΨCL is fitted from specific (x+, x−i ). We denote −D(k) for x−i is the k-th largest order
statistic of {−D1, . . . ,−DK}. By Theorem 23, the distribution function ΨCL for −D(k) can
be written as:

ΨCL(x;x
+, α, σ, k) = exp{−τ(z)}

k−1∑
s=0

τ(z)s

s!
(36)

with τ(z) =
{
1 + ξ

( z−µ
σ

)}−1/ξ
, z = ρ(f(x), f(x+))− 1. ξ, µ, σ are the same with (35).

Let x ∼ Dc+ be the positive test sample of x+. As we discuss in Section 3.1, the latent
label for unlabeled positive sample can be given by yc+ . In Section 4, we propose that
judging positive sample correctly on CL encoder and downstream task can be transformed
to judge whether or not WCLf(x) > 0 and yc+ · g(x) > 0 are True, respectively. Thus, for
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every negative sample x−i , we have

P(WCLf(x) > 0 | x)− P(yc+ · g(x) > 0 | x)
=ΨCL(x;x

+, α, σ, k)−ΨLE(x;x
+, α, σ)

= exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
− exp

[
−
{
1 + ξ

(
z − µ

σ

)}−1/ξ
]

=exp{−τ(z)}
k−1∑
s=1

τ(z)s

s!

≥0

(37)

with τ(z) =
{
1 + ξ

( z−µ
σ

)}−1/ξ
, z = ρ(f(x), f(x+))− 1. Equality holds if and only if k = 1.

Recall that x = x+ + δ, ∥δ∥∞ ≤ ϵ, i.e. x ∈ B∞(x+, ϵ), which is in the constraints of (10) and
(13). By Theorem 24, we have:

RCL(f ;x
+, x−i )− RLE(g;x

+, yc+)

=

∫ 1/2

1−ΨCL(x;x+,α,σ,k)

1

Φ(p)
dp−

∫ 1/2

1−ΨLE(x;x+,α,σ)

1

Φ(p)
dp

=

∫ 1−ΨLE(x;x
+,α,σ)

1−ΨCL(x;x+,α,σ,k)

1

Φ(p)
dp

≥0,

(38)

which recovers the theorem statement. Equality holds if and only if k = 1.

A.5 Proof of Theorem 18

Theorem 18. Given an encoder f : X → Rd, two positive samples x+1 , x
+
2 and one negative

sample x−, if ρ(f(x+1 ), f(x
−)) ≥ ρ(f(x+2 ), f(x

−)), then

RCL(f ;x
+
1 , x

−) ≤ RCL(f ;x
+
2 , x

−). (39)

Proof In this proposition, we consider the situation in which multiple positive samples
x+ and only one negative sample x− are used. Formally, given an unlabeled sample
z = ({x+i }Ki=1, x

−), we define the margin distance of x− as M− := mini∈[K]D
−
i , where

D−
i := (1− ρ(f(x+i ), f(x

−))/2.

We denote the lower tail of the distribution of M− as Ψneg. Similar to the idea of
Theorem 14, we use Ψneg to produce the probability of x falling into the margin of x−, which
can be interpreted as the probability of x being a negative sample. From Theorem 21, we
know that Ψneg also converges to the Reverse Weibull distribution, and can be written to
the form as following:

Ψneg(x;x
−, α, σ) = exp

{
−
(
1− ρ(f(x), f(x−))

σ

)α}
, (40)
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where ρ(f(x), f(x−)) is the instance similarity between x and x−. α, σ > 0 are Weibull
shape and scale parameters, obtained from fitting to the λ smallest margin distances D−

i .
Cumulative distribution function Ψneg is monotonic increasing. Given two positive

samples x+1 , x
+
2 , if ρ(f(x

+
1 ), f(x

−)) ≥ ρ(f(x+2 ), f(x
−)), we have:

Ψneg(x
+
1 ;x

−, α, σ) ≥ Ψneg(x
+
2 ;x

−, α, σ) (41)

x being the positive sample of x+ means that x is more similar to x+ than to x−. From
Theorem 24 we have:

RCL(f ;x
+
1 , x

−)− RCL(f ;x
+
2 , x

−)

=

∫ 1/2

Ψneg(x
+
1 ;x−,α,σ)

1

Φ(p)
dp−

∫ 1/2

Ψneg(x
+
2 ;x−,α,σ)

1

Φ(p)
dp

=−
∫ Ψneg(x

+
1 ;x−,α,σ)

Ψneg(x
+
2 ;x−,α,σ)

1

Φ(p)
dp

≤0,

(42)

which recovers the theorem statement. Equality holds if and only if ρ(f(x+1 ), f(x
−)) =

ρ(f(x+2 ), f(x
−)).

Appendix B. Analysis for Multi-class Setting

B.1 Contrastive Learning

We provide the contrastive framework for multi-class setting by extending the binary
framework (Section 3.1) in Saunshi et al. (2019). We consider the data generation process
with p negetive latent classes and p ·K negative samples. The scheme for generating an
unlabeled sample z = (x, x+, {x−i1}Ki=1, . . . , {x

−
ip}Ki=1) ∈ U is that:

1. Draw p+ 1 latent classes (c+, {c−j }
p
j=1) ∼ ηp+1;

2. Draw two similar samples (x, x+) ∼ D2
c+ ;

3. Draw K negative samples from Dc−j
, j ∈ [p]: {x−ij ∼ Dc−j

| i ∈ [K]}.
We focus on logistic loss : ℓ(v) = log2(1 +

∑
m exp(−vm)) for v ∈ RK , then we define the

unsupervised contrastive loss with p negative latent classes:

Lun(f) = E
c+,{c−j }
∼ηp+1

E
x,x+∼D2

c+

x−
ij∼D

c−
j

ℓ
({

f(x)T
(
f(x+)−f(x−ij)

)})
. (43)

B.2 Proof of Theorem 17

Theorem 17 (Multi-class case for Theorem 15). gM is trained on the labeled dataset
with p+ 1 classes, gj is the binary classifier of the specific latent class pair (c+, c−j ), j ∈ [p].

Then, for different negative samples x−ij and latent class pairs (c+, c−j ) generated following
Appendix B.1, we have

RCL(f ;x
+, x−ij)

(i)

≥ RLE(gj ;x
+, yc+)

(ii)

≥ RLE(gM ;x+, yc+).
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Proof As the definition in Appendix B.1, we sample an unlabeled sample z = (x, x+,
{x−i1}Ki=1, . . . , {x

−
ip}Ki=1). For every latent class pair (c+, c−j ), we define the margin distance as

Mj := mini∈[K]Dij , where Dij := (1−ρ(f(x+), f(x−ij))/2. Following the proof of Theorem 15

in Appendix A.4, we can define Ψj
LE and Ψj

CL for (c+, c−j ) as follows:

Ψj
LE(x;x

+, α, σ) = exp

[
−
{
1 + ξ

(
z − µ

σ

)}−1/ξ
]
,

Ψj
CL(x;x

+, α, σ, k) = exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
,

(44)

with τ(z) =
{
1 + ξ

( z−µ
σ

)}−1/ξ
, z = ρ(f(x), f(x+)) − 1. Ψj

LE and Ψj
CL are obtained from

fitting to the λ smallest margin distances Dij . By Theorem 15, we have:

RCL(f ;x
+, x−ij)− RLE(gj ;x

+, yc+)

=

∫ 1−Ψj
LE(x;x

+,α,σ)

1−Ψj
CL(x;x

+,α,σ,k)

1

Φ(t)
dt

≥0,

(45)

where Φ(t) is defined in Theorem 24, j ∈ [p]. So the inequality (i) is proved.
For the multi-class scenario, the robust radius depends on the most vulnerable class, i.e.

P(yc+ · gM (x) > 0 | x) = min
j∈[p]

Ψj
LE(x;x

+, α, σ). (46)

By Theorem 24, we have:

RLE(gj ;x
+, yc+)− RLE(gM ;x+, yc+)

=

∫ 1−minj∈[p] Ψ
j
LE(x;x

+,α,σ)

1−Ψj
LE(x;x

+,α,σ)

1

Φ(t)
dt

≥0,

(47)

then inequality (ii) is proved. Overall, we conclude our proof.

Appendix C. Incomplete verifiers

We introduce two incomplete verifiers with different verified tightness used for RVCL. Due
to the nonlinear activations σ(·), the feasible set of (10) and (13) is nonconvex. One intuitive
idea is to perform the convex relaxation of the feasible set to build incomplete verifiers. This
paper discusses ReLU networks with CROWN (Zhang et al., 2018), which is a method used
to relax the nonconvex equality constraints ϕ̂k(·) = σ(ϕk(·)) to convex inequality constraints.

Let l
(j)
k and u

(j)
k be the lower and upper bound of ϕ

(j)
k , i.e. l

(j)
k < ϕ

(j)
k < u

(j)
k , k ∈ [L].

Given the ReLU activation function σ(y) = max(y, 0), CROWN uses linear constraints to

relax ReLU: α
(i)
j ϕ

(j)
k ≤ ϕ̂

(j)
k ≤ u

(j)
k

u
(j)
k −l

(j)
k

(
ϕ
(j)
k − l

(j)
k

)
, where 0 ≤ α

(i)
j ≤ 1. After convex

relaxation, (10) and (13) can be efficiently solved, as follows:
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Lemma 25 (CROWN bound (Zhang et al., 2018)). Given an L-layer NN ϕL : Rd0 → R with

weights Wk and bias bk, and the pre-activation bound l
(j)
k < ϕ

(j)
k < u

(j)
k (k ∈ [L], j ∈ [dk]),

x′ ∈ B(x, ϵ), we have:

min
x′

WLϕ̂L−1(x
′) + bL ≥ min

x′
c⊤x′ + c0, (48)

where c and c0 can be computed by Wk, bk, l
(j)
k , u

(j)
k .

Another incomplete verifier stronger than CROWN is β-CROWN (Wang et al., 2021)
which is the state-of-the-art verification method. β-CROWN uses a few steps of gradient
ascent to achieve bounds as tight as possible but suffer from high time cost.

Lemma 26 (β-CROWN bound (Wang et al., 2021)). Given an L-layer NN ϕL : Rd0 → R
with weights Wk and bias bk, the pre-activation bound l

(j)
k < ϕ

(j)
k < u

(j)
k , x′ ∈ B(x, ϵ), and

split constraints z ∈ Z, we have:

min
x′,z∈Z

WLϕ̂L−1(x
′)+bL≥max

β≥0
min
x′

(a+Pβ)⊤x′+q⊤β+c0, (49)

where a,P , q and c0 can be computed by Wk, bk, l
(j)
k , u

(j)
k , β is the multiplier of Lagrange

function.

We modify two supervised verifiers with different verification tightness in order to show
that: a stronger verifier can still achieve a tighter certified radius RCL in RVCL framework,
which illustrates the efficacy of RVCL. The related experiment results are in Section 6.3.

The procedure of incomplete verifier is denoted by IncompleteVerifier in Algorithm 1,
which aims to give the verified lower bound f(x+, x−, ϵ) of the function f̃ in (13).

Appendix D. Difference with CLEVER

CLEVER (Cross-Lipschitz Extreme Value for nEtwork Robustness) (Weng et al., 2018b)
estimates the robust radius R using extreme value theory (EVT). In this paper, we utilize
EVT in a totally different way compared with CLEVER:

1. To produce the probability of x being a positive sample of x+, we utilize EVT to
estimate the lower tail of the margin distance (Theorem 14); thus, we can compare
the probability given by the CL encoder and the downstream task. While CLEVER
focuses on estimating R by proposing a sampling based approach with EVT to estimate
the local Lipschitz constant; it is based on a theoretical analysis of formal robustness
guarantee with Lipschitz continuity assumption.

2. We use EVT to reveal the quantitative relationship between the robust radius of the
CL encoder and that of the downstream task. While CLEVER only focuses on the
robust radius for supervised verification.

Appendix E. Experimental Settings

For probabilistic verification, we adopt the same setup as RoCL (Kim et al., 2020). In this
section, we provide the setup for deterministic verification.
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E.1 Datasets

For model training, we use Mnist (LeCun and Cortes, 2010) and CIFAR-10/CIFAR-100
(Krizhevsky and Hinton, 2009). Mnist is a dataset of 28 × 28 pixel grayscale images of
handwritten single digits between 0 and 9, which contains 60,000 training images and 10,000
testing images with 10 classes. CIFAR-10 and CIFAR-100 contain 50,000 training and
10,000 testing images with 10 classes and 100 classes, respectively. Size for color image in
CIFAR-10/CIFAR-100 is 32× 32.

E.2 Model architectures

Table 6 summarizes the CNN encoder architectures used for deterministic verification. Each
layer (except the last linear layer) is followed by ReLU activation function. Based and
Deep are used in Wang et al. (2021), CNN-A and CNN-B are used in Dathathri et al.
(2020). To study the sensitivity of featrue dimension, the ouput dimension of encoder can
be changed from 50 to 250 on CNN-B.

Table 6: Model structures used in our experiments. For example, Conv(1, 8, 4) stands for
a conventional layer with 1 input channel, 8 output channels and a 4× 4 kernel.
Linear(754, 100) stands for a fully connected layer with 754 input features and 100
output features.

Datasets Model name Encoder structure

Mnist
Base Conv(1, 8, 4) - Conv(8, 16, 4) - Linear(784, 100)

CNN-A Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(1568, 100)

CIFAR-10

Base Conv(3, 8, 4) - Conv(8, 16, 4) - Linear(1024, 100)

Deep Conv(3, 8, 4) - Conv(8, 8, 3) - Conv(8, 8, 3) - Conv(8, 8, 4) - Linear(412, 100)

CNN-A Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100)

CNN-B Conv(3, 32, 5) - Conv(32, 128, 4) - Linear(8192, 100)

E.3 Training setup

All NNs are trained with verification-agnostic setting (Dathathri et al., 2020), which means
without using any tricks to promote verifiability. For deterministic verification, we use the
model mentioned in Appendix E.2 as the base encoder network and 2-layer multi-layer
perceptron as the projection head (Chen et al., 2020). We set the step size of instance-wise
attack α = 0.007, the number of PGD maximize iteration K = 10. For the rest, we follow
the similar setup of SimCLR (Chen et al., 2020) and RoCL (Kim et al., 2020).

For optimization, we train the encoder with 500 epochs under Adam (Kingma and Ba,
2015) optimizer with the learning rate of 0.001. For the learning rate scheduling, the learning
rate is dropped by a factor of 10 for every 100 epochs. The batch size in training is 256.

E.4 Evaluation setup

Linear evaluation We train the downstream linear layer on the top of the frozen encoder,
and the training images are clean. We train the linear layer for 100 epochs with the learning
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rate of 0.001, and use the cross-entropy loss. The learning rate is dropped by a factor of 10
for every 50 epochs.

Robust test To evaluate the adversarial robustness, we use white-box project gradient
descent (PGD) attack. We set ℓ∞ attack with 20 iteration steps. We set ϵtest = 0, 0.15, 0.2
for Mnist, and ϵtest = 0, 8/255, 16/255 for CIFAR-10/CIFAR-100.

Incomplete verifiers If not special specified, CBC (β-CROWN (Wang et al., 2021) for
CL) working as an incomplete verifier uses three minutes for each image.

E.5 Training efficiency

Our experiments are conducted on a Ubuntu 64-Bit Linux workstation, having 10-core Intel
Xeon Silver CPU (2.20 GHz) and NVIDIA GeForce RTX 3090 GPU with 24GB graphics
memory. For adversarial contrastive learning on base encoder, it takes about 10 hours to
train 500 epochs on Mnist CNN-A and CIFAR-10 CNN-B with a single GPU. And it
takes about 120 minutes to train 100 epochs on downstream linear layer.
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